Milk Source Identification and Milk Quality Estimation Using an Electronic Nose and Machine Learning Techniques

Author:

Mu Fanglin,Gu Yu,Zhang JieORCID,Zhang Lei

Abstract

In this study, an electronic nose (E-nose) consisting of seven metal oxide semiconductor sensors is developed to identify milk sources (dairy farms) and to estimate the content of milk fat and protein which are the indicators of milk quality. The developed E-nose is a low cost and non-destructive device. For milk source identification, the features based on milk odor features from E-nose, composition features (Dairy Herd Improvement, DHI analytical data) from DHI analysis and fusion features are analyzed by principal component analysis (PCA) and linear discriminant analysis (LDA) for dimension reduction and then three machine learning algorithms, logistic regression (LR), support vector machine (SVM), and random forest (RF), are used to construct the classification model of milk source (dairy farm) identification. The results show that the SVM model based on the fusion features after LDA has the best performance with the accuracy of 95%. Estimation model of the content of milk fat and protein from E-nose features using gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), and random forest (RF) are constructed. The results show that the RF models give the best performance (R2 = 0.9399 for milk fat; R2 = 0.9301 for milk protein) and indicate that the proposed method in this study can improve the estimation accuracy of milk fat and protein, which provides a technical basis for predicting the quality of milk.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3