Machine Learning Model to Estimate Net Joint Moments during Lifting Task Using Wearable Sensors: A Preliminary Study for Design of Exoskeleton Control System

Author:

Chae Seungheon,Choi Ahnryul,Jung Hyunwoo,Kim Tae HyongORCID,Kim Kyungran,Mun Joung Hwan

Abstract

Accurately measuring the lower extremities and L5/S1 moments is important since L5/S1 moments are the principal parameters that measure the risk of musculoskeletal diseases during lifting. In this study, protocol that predicts lower extremities and L5/S1 moments with an insole sensor was proposed to replace the prior methods that have spatial constraints. The protocol is hierarchically composed of a classification model and a regression model to predict joint moments. Additionally, a single LSTM model was developed to compare with proposed protocol. To optimize hyperparameters of the machine learning model and input feature, Bayesian optimization method was adopted. As a result, the proposed protocol showed a relative root mean square error (rRMSE) of 8.06~13.88% while the single LSTM showed 9.30~18.66% rRMSE. This protocol in this research is expected to be a starting point for developing a system for estimating the lower extremity and L5/S1 moment during lifting that can replace the complex prior method and adopted to workplace environments. This novel study has the potential to precisely design a feedback iterative control system of an exoskeleton for the appropriate generation of an actuator torque.

Funder

Rural Development Administration

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3