Abstract
Accurately measuring the lower extremities and L5/S1 moments is important since L5/S1 moments are the principal parameters that measure the risk of musculoskeletal diseases during lifting. In this study, protocol that predicts lower extremities and L5/S1 moments with an insole sensor was proposed to replace the prior methods that have spatial constraints. The protocol is hierarchically composed of a classification model and a regression model to predict joint moments. Additionally, a single LSTM model was developed to compare with proposed protocol. To optimize hyperparameters of the machine learning model and input feature, Bayesian optimization method was adopted. As a result, the proposed protocol showed a relative root mean square error (rRMSE) of 8.06~13.88% while the single LSTM showed 9.30~18.66% rRMSE. This protocol in this research is expected to be a starting point for developing a system for estimating the lower extremity and L5/S1 moment during lifting that can replace the complex prior method and adopted to workplace environments. This novel study has the potential to precisely design a feedback iterative control system of an exoskeleton for the appropriate generation of an actuator torque.
Funder
Rural Development Administration
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献