The Relationships Among Sagittal-Plane Lower Extremity Moments: Implications for Landing Strategy in Anterior Cruciate Ligament Injury Prevention

Author:

Shimokochi Yohei1,Yong Lee Sae2,Shultz Sandra J.3,Schmitz Randy J.3

Affiliation:

1. Osaka University of Health and Sport Sciences, Osaka, Japan

2. University of Virginia, Charlottesville, VA

3. University of North Carolina at Greensboro, Greensboro, NC

Abstract

Abstract Context: Excessive quadriceps contraction with insufficient hamstrings muscle cocontraction has been shown to be a possible contributing factor for noncontact anterior cruciate ligament (ACL) injuries. Assessing the relationships among lower extremity internal moments may provide some insight into avoiding muscle contraction patterns that increase ACL injury risk. Objective: To examine the relationships of knee-extensor moment with ankle plantar-flexor and hip-extensor moments and to examine the relationship between knee moment and center of pressure as a measure of neuromuscular response to center-of-mass position. Design: Cross-sectional study. Setting: Applied Neuromechanics Research Laboratory. Patients or Other Participants: Eighteen healthy, recreationally active women (age  =  22.3 ± 2.8 years, height  =  162.5 ± 8.1 cm, mass  =  57.8 ± 9.3 kg). Intervention(s): Participants performed a single-leg landing from a 45-cm box onto a force plate. Kinetic and kinematic data were collected. Main Outcome Measure(s): Pearson product moment correlation coefficients were calculated among the net peak knee-extensor moment (KEMpk), sagittal-plane ankle (AM) and hip (HM) net internal moments, and anterior-posterior center of pressure relative to foot center of mass at KEMpk (COP). Results: Lower KEMpk related to both greater AM (r  =  −0.942, P < .001) and HM (r  =  −0.657, P  =  .003). We also found that more anterior displacement of COP was related to greater AM (r  =  −0.750, P < .001) and lower KEMpk (r  =  0.618, P  =  .006). Conclusions: Our results suggest that participants who lean the whole body forward during landing may produce more plantar-flexor moment and less knee-extensor moment, possibly increasing hip-extensor moment and decreasing knee-extensor moment production. These results suggest that leaning forward may be a technique to decrease quadriceps contraction demand while increasing hamstrings cocontraction demand during a single-leg landing.

Publisher

Journal of Athletic Training/NATA

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,General Medicine

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3