Improvement of Wheat Grain Yield Prediction Model Performance Based on Stacking Technique

Author:

Li Changchun,Wang YilinORCID,Ma Chunyan,Chen Weinan,Li Yacong,Li Jingbo,Ding Fan,Xiao Zhen

Abstract

Crop growth and development is a dynamic and complex process, and the essence of yield formation is the continuous accumulation of photosynthetic products from multiple fertility stages. In this study, a new stacking method for integrating multiple growth stages information was proposed to improve the performance of the winter wheat grain yield (GY) prediction model. For this purpose, crop canopy hyperspectral reflectance and leaf area index (LAI) data were obtained at the jointing, flagging, anthesis and grain filling stages. In this case, 15 vegetation indices and LAI were used as input features of the elastic network to construct GY prediction models for single growth stage. Based on Stacking technique, the GY prediction results of four single growth stages were integrated to construct the ensemble learning framework. The results showed that vegetation indices coupled LAI could effectively overcome the spectral saturation phenomenon, the validated R2 of each growth stage was improved by 10%, 22.5%, 3.6% and 10%, respectively. The stacking method provided more stable information with higher prediction accuracy than the individual fertility results (R2 = 0.74), and the R2 of the model validation phase improved by 236%, 51%, 27.6%, and 12.1%, respectively. The study can provide a reference for GY prediction of other crops.

Funder

Changchun Li

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3