Wheat Yield Prediction Using Machine Learning Method Based on UAV Remote Sensing Data

Author:

Yang Shurong12,Li Lei2,Fei Shuaipeng23ORCID,Yang Mengjiao4,Tao Zhiqiang2,Meng Yaxiong1,Xiao Yonggui2

Affiliation:

1. State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China

2. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

3. College of Land Science and Technology, China Agricultural University, Beijing 100193, China

4. Biotechnology Department, Xinjiang Agricultural Vocational Technical College, Changji 831100, China

Abstract

Accurate forecasting of crop yields holds paramount importance in guiding decision-making processes related to breeding efforts. Despite significant advancements in crop yield forecasting, existing methods often struggle with integrating diverse sensor data and achieving high prediction accuracy under varying environmental conditions. This study focused on the application of multi-sensor data fusion and machine learning algorithms based on unmanned aerial vehicles (UAVs) in wheat yield prediction. Five machine learning (ML) algorithms, namely random forest (RF), partial least squares (PLS), ridge regression (RR), k-nearest neighbor (KNN) and extreme gradient boosting decision tree (XGboost), were utilized for multi-sensor data fusion, together with three ensemble methods including the second-level ensemble methods (stacking and feature-weighted) and the third-level ensemble method (simple average), for wheat yield prediction. The 270 wheat hybrids were used as planting materials under full and limited irrigation treatments. A cost-effective multi-sensor UAV platform, equipped with red–green–blue (RGB), multispectral (MS), and thermal infrared (TIR) sensors, was utilized to gather remote sensing data. The results revealed that the XGboost algorithm exhibited outstanding performance in multi-sensor data fusion, with the RGB + MS + Texture + TIR combination demonstrating the highest fusion performance (R2 = 0.660, RMSE = 0.754). Compared with the single ML model, the employment of three ensemble methods significantly enhanced the accuracy of wheat yield prediction. Notably, the third-layer simple average ensemble method demonstrated superior performance (R2 = 0.733, RMSE = 0.668 t ha−1). It significantly outperformed both the second-layer ensemble methods of stacking (R2 = 0.668, RMSE = 0.673 t ha−1) and feature-weighted (R2 = 0.667, RMSE = 0.674 t ha−1), thereby exhibiting superior predictive capabilities. This finding highlighted the third-layer ensemble method’s ability to enhance predictive capabilities and refined the accuracy of wheat yield prediction through simple average ensemble learning, offering a novel perspective for crop yield prediction and breeding selection.

Funder

The National Science and Technology Major Program;The National Natural Science Foundation of China;The Beijing Joint Research Program for Germplasm Innovation and New Variety Breeding

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3