Strata Movement of the Thick Loose Layer under Strip-Filling Mining Method: A Case Study

Author:

Chang Qingliang,Yao Xingjie,Leng QiangORCID,Cheng Hao,Wu Fengfeng,Zhou Huaqiang,Sun YuantianORCID

Abstract

Filling mining plays an important role in controlling surface subsidence. To study the movement of overburdened rock in filling mining under thick loose layers, a numerical simulation combing field measurement in CT30101 working face in the Mahuangliang coal mine was tested. The results show that different filling rates and filling body strength have different influences on roof and surface movement. The filling rate has a greater impact, which is the main control factor. The filling stress and roof tensile stress decrease gradually with roadway filling. The filling body stress and roof tensile stress in the first and second rounds are far greater than in the fourth round. After the completion of filling, the first and second round of filling bodies mainly bear the overburden, and the total deformation of the surrounding rock of the main transport roadway is very small, and therefore the displacement of the overburdened rock is controllable. The field monitoring results also show that the overburdened rock became stable after several fillings rounds. Combing the numerical modeling and field tests results, this study can be a guideline for similar geological conditions especially for coal mining under thick loose layers and thin bedrock.

Funder

the Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3