RiIG Modeled WCP Image-Based CNN Architecture and Feature-Based Approach in Breast Tumor Classification from B-Mode Ultrasound

Author:

Kabir Shahriar MahmudORCID,Bhuiyan Mohammed I. H.,Tanveer Md Sayed,Shihavuddin ASMORCID

Abstract

This study presents two new approaches based on Weighted Contourlet Parametric (WCP) images for the classification of breast tumors from B-mode ultrasound images. The Rician Inverse Gaussian (RiIG) distribution is considered for modeling the statistics of ultrasound images in the Contourlet transform domain. The WCP images are obtained by weighting the RiIG modeled Contourlet sub-band coefficient images. In the feature-based approach, various geometrical, statistical, and texture features are shown to have low ANOVA p-value, thus indicating a good capacity for class discrimination. Using three publicly available datasets (Mendeley, UDIAT, and BUSI), it is shown that the classical feature-based approach can yield more than 97% accuracy across the datasets for breast tumor classification using WCP images while the custom-made convolutional neural network (CNN) can deliver more than 98% accuracy, sensitivity, specificity, NPV, and PPV values utilizing the same WCP images. Both methods provide superior classification performance, better than those of several existing techniques on the same datasets.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiresolution Evaluation of Contourlet Transform for the Diagnosis of Skin Cancer;2024-09-03

2. Optimizing proportional balance between supervised and unsupervised features for ultrasound breast lesion classification;Biomedical Signal Processing and Control;2024-01

3. RiIG-WCP Image-based Breast Tumors Classification Using Swin Transformer;2023 26th International Conference on Computer and Information Technology (ICCIT);2023-12-13

4. RM-CC Image-Based Breast Tumor Classification Using Vision Transformer;2023 5th International Conference on Sustainable Technologies for Industry 5.0 (STI);2023-12-09

5. Discrete Wavelet Coefficient-based Embeddable Branch for Ultrasound Breast Masses Classification;Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing;2023-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3