Optimizing proportional balance between supervised and unsupervised features for ultrasound breast lesion classification
Author:
Publisher
Elsevier BV
Subject
Health Informatics,Signal Processing,Biomedical Engineering
Reference42 articles.
1. Role of Breast Ultrasound for the Detection and Differentiation of Breast Lesions;Madjar;Breast Care,2010
2. Unsupervised learning method via triple reconstruction for the classification of ultrasound breast lesions;Song;Biomed. Signal Process. Control,2022
3. Errors and mistakes in breast ultrasound diagnostics;Jakubowski;Journal of Ultrasonography,2012
4. Identification of Breast Malignancy by Marker-Controlled Watershed Transformation and Hybrid Feature Set for Healthcare;Sadad;Appl. Sci.,2020
5. Analysis of Co-Occurrence Texture Statistics as a Function of Gray-Level Quantization for Classifying Breast Ultrasound;Gómez;IEEE Trans. Med. Imaging,2012
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Ultrasound Image Analysis with Vision Transformers—Review;Diagnostics;2024-03-04
2. Multi-task approach based on combined CNN-transformer for efficient segmentation and classification of breast tumors in ultrasound images;Visual Computing for Industry, Biomedicine, and Art;2024-01-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3