A Novel Stacked Ensemble for Hate Speech Recognition

Author:

Aljero Mona Khalifa A.ORCID,Dimililer NazifeORCID

Abstract

Detecting harmful content or hate speech on social media is a significant challenge due to the high throughput and large volume of content production on these platforms. Identifying hate speech in a timely manner is crucial in preventing its dissemination. We propose a novel stacked ensemble approach for detecting hate speech in English tweets. The proposed architecture employs an ensemble of three classifiers, namely support vector machine (SVM), logistic regression (LR), and XGBoost classifier (XGB), trained using word2vec and universal encoding features. The meta classifier, LR, combines the outputs of the three base classifiers and the features employed by the base classifiers to produce the final output. It is shown that the proposed architecture improves the performance of the widely used single classifiers as well as the standard stacking and classifier ensemble using majority voting. We also present results on the use of various combinations of machine learning classifiers as base classifiers. The experimental results from the proposed architecture indicated an improvement in the performance on all four datasets compared with the standard stacking, base classifiers, and majority voting. Furthermore, on three of these datasets, the proposed architecture outperformed all state-of-the-art systems.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic Age and Gender Recognition Using Ensemble Learning;Applied Sciences;2024-08-06

2. Hate speech detection in the Bengali language: a comprehensive survey;Journal of Big Data;2024-07-23

3. Ebola optimization based spiking neural network for automatic hate speech recognition;International Journal of Information Technology;2024-06-26

4. BengaliHateCB: A Hybrid Deep Learning Model to Identify Bengali Hate Speech Detection from Online Platform;2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT);2024-05-02

5. Persian offensive language detection;Machine Learning;2023-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3