Automatic Hate Speech Detection in English-Odia Code Mixed Social Media Data Using Machine Learning Techniques

Author:

Mohapatra Sudhir KumarORCID,Prasad Srinivas,Bebarta Dwiti KrishnaORCID,Das Tapan Kumar,Srinivasan KathiravanORCID,Hu Yuh-ChungORCID

Abstract

Hate speech on social media may spread quickly through online users and subsequently, may even escalate into local vile violence and heinous crimes. This paper proposes a hate speech detection model by means of machine learning and text mining feature extraction techniques. In this study, the authors collected the hate speech of English-Odia code mixed data from a Facebook public page and manually organized them into three classes. In order to build binary and ternary datasets, the data are further converted into binary classes. The modeling of hate speech employs the combination of a machine learning algorithm and features extraction. Support vector machine (SVM), naïve Bayes (NB) and random forest (RF) models were trained using the whole dataset, with the extracted feature based on word unigram, bigram, trigram, combined n-grams, term frequency-inverse document frequency (TF-IDF), combined n-grams weighted by TF-IDF and word2vec for both the datasets. Using the two datasets, we developed two kinds of models with each feature—binary models and ternary models. The models based on SVM with word2vec achieved better performance than the NB and RF models for both the binary and ternary categories. The result reveals that the ternary models achieved less confusion between hate and non-hate speech than the binary models.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3