Design and In Vivo Evaluation of a Novel Transdermal Hydrogen/Oxygen-Generating Patch

Author:

Ho Wen-Tsung,Yu Tsung-Hsun,Chao Wen-Hung,Wang Bao-Yen,Kuo Yu-Yeh,Lin Ming-HsienORCID,Yeh Skye Hsin-HsienORCID

Abstract

Hydrogen/oxygen-generating biomaterials, a new trend in regenerative medicine, generate and supply hydrogen/oxygen to increase the local levels of hydrogen/oxygen to support tissue healing and regeneration. In this study, we carefully defined a strategic plan to develop a gas-permeable layer suitable for use in sanitary products that is capable of supplying hydrogen or oxygen in situ using calcium hydroxides as chemical oxygen sources. In vitro physicochemical evaluations of hydrogen- and oxygen-generation efficiency were performed to determine the amount of hydrogen and oxygen produced. An in vivo permeation study was conducted to assess biological parameters, including blood oxygen (O2) and hydrogen (H+) levels. The stress hormone corticosterone and inflammation marker interleukin 6 (IL-6) were also quantified. The hydrogen/oxygen-generating patch (HOGP) continuously generated H+ or O2 for up to 12 h after activation by water. An in vivo evaluation showed blood H+ peaked at 2 h after application of the HOGP and then progressively decreased until the end of study (24 h), whereas oxygen content (O2(ct)) and oxygen saturation (SO2(SAT)) continuously increased up to 6 h. Hematological and electrolyte parameters did not significantly change compared to baseline. Wearing the stretch fabric used to secure the patch did not significantly increase serum corticosterone or interleukin 6 (IL-6) in the animals. This novel design of a hydrogen/oxygen-generating biomaterial for supplying topical H+/O2 may hold potential for increasing in situ or circulating H+/O2 levels to improve healthcare outcomes.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3