Can ADAS Distract Driver’s Attention? An RGB-D Camera and Deep Learning-Based Analysis

Author:

Ulrich LucaORCID,Nonis FrancescaORCID,Vezzetti Enrico,Moos Sandro,Caruso GiandomenicoORCID,Shi Yuan,Marcolin Federica

Abstract

Driver inattention is the primary cause of vehicle accidents; hence, manufacturers have introduced systems to support the driver and improve safety; nonetheless, advanced driver assistance systems (ADAS) must be properly designed not to become a potential source of distraction for the driver due to the provided feedback. In the present study, an experiment involving auditory and haptic ADAS has been conducted involving 11 participants, whose attention has been monitored during their driving experience. An RGB-D camera has been used to acquire the drivers’ face data. Subsequently, these images have been analyzed using a deep learning-based approach, i.e., a convolutional neural network (CNN) specifically trained to perform facial expression recognition (FER). Analyses to assess possible relationships between these results and both ADAS activations and event occurrences, i.e., accidents, have been carried out. A correlation between attention and accidents emerged, whilst facial expressions and ADAS activations resulted to be not correlated, thus no evidence that the designed ADAS are a possible source of distraction has been found. In addition to the experimental results, the proposed approach has proved to be an effective tool to monitor the driver through the usage of non-invasive techniques.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3