Lane Line Type Recognition Based on Improved YOLOv5

Author:

Liu Boyu1,Wang Hao1,Wang Yongqiang1,Zhou Congling1,Cai Lei1

Affiliation:

1. School of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin 300222, China

Abstract

The recognition of lane line type plays an important role in the perception of advanced driver assistance systems (ADAS). In actual vehicle driving on roads, there are a variety of lane line type and complex road conditions which present significant challenges to ADAS. To address this problem, this paper proposes an improved YOLOv5 method for recognising lane line type. This method can accurately and quickly identify the types of lane lines and can show good recognition results in harsh environments. The main strategy of this method includes the following steps: first, the FasterNet lightweight network is introduced into all the concentrated-comprehensive convolution (C3) modules in the network to accelerate the inference speed and reduce the number of parameters. Then, the efficient channel attention (ECA) mechanism is integrated into the backbone network to extract image feature information and improve the model’s detection accuracy. Finally, the sigmoid intersection over union (SIoU) loss function is used to replace the original generalised intersection over union (GIoU) loss function to further enhance the robustness of the model. Through experiments, the improved YOLOv5s algorithm achieves 95.1% of mAP@0.5 and 95.2 frame·s−1 of FPS, which can satisfy the demand of ADAS for accuracy and real-time performance. And the number of model parameters are only 6M, and the volume is only 11.7 MB, which will be easily embedded into ADAS and does not require huge computing power to support it. Meanwhile, the improved algorithms increase the accuracy and speed of YOLOv5m, YOLOv5l, and YOLOv5x models to different degrees. The appropriate model can be selected according to the actual situation. This plays a practical role in improving the safety of ADAS.

Funder

Beijing Smarter Eye Technology Co., Ltd.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3