Development of a Novel Design Strategy for Moving Mechanisms Used in Multi-Material Plastic Injection Molds

Author:

Almeida Fátima deORCID,Sousa Vitor F. C.,Silva Francisco J. G.ORCID,Campilho Raúl D. S. G.ORCID,Ferreira Luís P.ORCID

Abstract

Plastics injection molding is a sector that is becoming increasingly competitive due to the environmental issues it entails, pressuring consumers to reduce its use. Thus, plastics processing companies attempt to minimize costs, with the aim of increasing competitiveness. This pressure is transmitted to the mold manufacturers, as the mold conditions the equipment that it is used for, which may have significantly different amortization costs. The present work aimed to design a novel mechanism able to deal with the necessary movements in 2K injection molding in a more compact way. A novel hybrid mechanical and hydraulic movement was developed. More compact movements lead to smaller molds, which can be used on smaller injection machines, leading to reduced costs. This methodology consists of multiplying a disproportionate movement to the mold through several movements, which results in a slightly more complex, but much more compact, system for molds devoted to multi-material injected parts.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3