Human Rotavirus Reverse Genetics Systems to Study Viral Replication and Pathogenesis

Author:

Komoto SatoshiORCID,Fukuda Saori,Murata TakayukiORCID,Taniguchi Koki

Abstract

Human rotaviruses (HuRVAs) are highly important causes of acute gastroenteritis in infants and young children worldwide. A lack of reliable and reproducible reverse genetics systems for HuRVAs has limited a proper understanding of HuRVA biology and also the rational design of live-attenuated vaccines. Since the development of the first reverse genetics system for RVAs (partially plasmid-based reverse genetics system) in 2006, there have been many efforts with the goal of generating infectious recombinant HuRVAs entirely from cloned cDNAs. However, the establishment of a HuRVA reverse genetics system was very challenging until 2019. This review article provides an overview of the historical background of the recent development of long-awaited HuRVA reverse genetics systems, beginning with the generation of recombinant human-simian reassortant RVAs with the aid of a helper virus in 2006 and the generation of recombinant animal (simian) RVAs in a helper virus-free manner in 2017, and culminating in the generation of recombinant HuRVAs entirely from plasmid cDNAs in 2019. Notably, the original HuRVA reverse genetics system has already been optimized to increase the efficiency of virus generation. Although the application of HuRVA reverse genetics systems has only just been initiated, these technologies will help to answer HuRVA research questions regarding viral replication and pathogenicity that could not be addressed before, and to develop next-generation vaccines and intestine-specific rotaviral vectors.

Funder

Japan Agency for Medical Research and Development

Japan Society for the Promotion of Science

Mochida Memorial Foundation for Medical and Pharmaceutical Research

Takeda Science Foundation

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3