Abstract
Moving target indication (MTI) based on space–time adaptive processing (STAP) has been widely used in airborne radar due to its ability for clutter suppression performance. However, the existing MTI methods suffer from the problems of insufficient training samples and low detection probability in a non-homogeneous clutter environment. To address these issues, this paper proposes a novel deep learning framework to improve target indication capability. First, combined with the problems of target indication caused by the non-homogeneous clutter, the clutter-plus-target training dataset was modeled by simulation, where various non-ideal factors, such as aircraft crabbing, array errors and internal clutter motion (ICM), were considered. The dataset considers various realistic situations, making the proposed method more robust. Then, a five-layer two-dimensional convolutional neural network (D2CNN) was designed and applied to learn the clutter and target characteristics distribution. The proposed D2CNN can predict the target with a high resolution to implement an end-to-end moving target indication (ETE-MTI) with a higher detection accuracy. In this D2CNN, the input was obtained by the clutter-plus-target angle-Doppler spectrum with a low-resolution estimated only by a few samples. The label was given by the target angle-Doppler spectrum with a high-resolution obtained by the target’s exact angle and Doppler. Thirdly, the proposed method used a few samples to improve the target indication and detection probability, which solved the problem of insufficient samples in the non-homogeneous clutter environments. To elaborate, the proposed method directly implements ETE-MTI without the support of the conventional STAP algorithm to suppress the clutter. The results verify the validity and the robustness of the proposed ETE-MTI with a few samples in the non-homogeneous and low signal-to-clutter ratio (SCR) environments.
Funder
National Nature Science Foundation of Guangdong
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities, Sun Yat-sen University
Key Areas of R&D Projects in Guangdong Province
Subject
General Earth and Planetary Sciences
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献