End-to-End Moving Target Indication for Airborne Radar Using Deep Learning

Author:

Gu YaoORCID,Wu Jianxin,Fang Yuyuan,Zhang Lei,Zhang Qiang

Abstract

Moving target indication (MTI) based on space–time adaptive processing (STAP) has been widely used in airborne radar due to its ability for clutter suppression performance. However, the existing MTI methods suffer from the problems of insufficient training samples and low detection probability in a non-homogeneous clutter environment. To address these issues, this paper proposes a novel deep learning framework to improve target indication capability. First, combined with the problems of target indication caused by the non-homogeneous clutter, the clutter-plus-target training dataset was modeled by simulation, where various non-ideal factors, such as aircraft crabbing, array errors and internal clutter motion (ICM), were considered. The dataset considers various realistic situations, making the proposed method more robust. Then, a five-layer two-dimensional convolutional neural network (D2CNN) was designed and applied to learn the clutter and target characteristics distribution. The proposed D2CNN can predict the target with a high resolution to implement an end-to-end moving target indication (ETE-MTI) with a higher detection accuracy. In this D2CNN, the input was obtained by the clutter-plus-target angle-Doppler spectrum with a low-resolution estimated only by a few samples. The label was given by the target angle-Doppler spectrum with a high-resolution obtained by the target’s exact angle and Doppler. Thirdly, the proposed method used a few samples to improve the target indication and detection probability, which solved the problem of insufficient samples in the non-homogeneous clutter environments. To elaborate, the proposed method directly implements ETE-MTI without the support of the conventional STAP algorithm to suppress the clutter. The results verify the validity and the robustness of the proposed ETE-MTI with a few samples in the non-homogeneous and low signal-to-clutter ratio (SCR) environments.

Funder

National Nature Science Foundation of Guangdong

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities, Sun Yat-sen University

Key Areas of R&D Projects in Guangdong Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3