Fast Wideband Beamforming Using Convolutional Neural Network

Author:

Wu Xun1,Luo Jie1,Li Guowei1,Zhang Shurui1ORCID,Sheng Weixing1

Affiliation:

1. School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

With the wideband beamforming approaches, the synthetic aperture radar (SAR) could achieve high azimuth resolution and wide swath. However, the performance of conventional adaptive wideband time-domain beamforming is severely affected as the received signal snapshots are insufficient for adaptive approaches. In this paper, a wideband beamformer using convolutional neural network (CNN) method, namely, frequency constraint wideband beamforming prediction network (WBPNet), is proposed to obtain a satisfactory performance in the circumstances of scanty snapshots. The proposed WBPNet successfully estimates the direction of arrival of interference with scanty snapshots and obtains the optimal weights with effectively null for the interference by utilizing the uniqueness of CNN to extract potential nonlinear features of input information. Meanwhile, the novel beamformer has an undistorted response to the wideband signal of interest. Compared with the conventional time-domain wideband beamforming algorithm, the proposed method can fast obtain adaptive weights because of using few snapshots. Moreover, the proposed WBPNet has a satisfactory performance on wideband beamforming with low computational complexity because it avoids the inverse operation of covariance matrix. Simulation results show the meliority and feasibility of the proposed approach.

Funder

National Natural Science Foundation of China

Postgraduate Research & Practice Innovation 389 Program of Jiangsu Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Complex Convolutional Neural Network for Adaptive Spatio-Temporal Broadband Beamforming;IEEE Transactions on Vehicular Technology;2024-07

2. Meander Structure Analysis Techniques Using Artificial Neural Networks;Applied Sciences;2024-07-01

3. Improved Convolutional Neural Network for Wideband Space-Time Beamforming;Electronics;2024-06-26

4. Review of: Deep Learning (DL) for Beamforming Array (BFA) Antenna;2024 21st International Multi-Conference on Systems, Signals & Devices (SSD);2024-04-22

5. An Ultrasound-Based Surveillance System for Bathroom Posture and Location Estimation;2024 IEEE International Conference on Consumer Electronics (ICCE);2024-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3