An Advanced Echo Separation Scheme for Space-Time Waveform-Encoding SAR Based on Digital Beamforming and Blind Source Separation

Author:

Chang ShengORCID,Deng Yunkai,Zhang YanyanORCID,Wang Rongxiang,Qiu JinsongORCID,Wang WeiORCID,Zhao Qingchao,Liu Dacheng

Abstract

To achieve high-resolution and wide-swath (HRWS) imaging, a space-time waveform-encoding (STWE) spaceborne synthetic aperture radar (SAR) system is adopted. In rugged terrain, the beam-pointing mismatch problem will appear when the traditional digital beamforming (DBF) technique is used to separate the received echoes. This problem leads to decreasing the received echo’s gain, deteriorating the quality of the image product and making the interpretation of SAR image difficult. To address this problem, an advanced echo separation scheme for STWE spaceborne SAR based on the DBF and blind source separation (BSS) is put forward in this paper. In the scheme, the echoes are transmitted within the adjacent pulse repetition intervals to simulate multiple beams, and the scattered echoes are received by the sixteen-channel antennas in elevation simultaneously. In post-processing, a detailed flow is adopted. In the method, the DBF is firstly performed on received echoes. Due to the error caused by terrain undulation, the degree of echo separation is not enough. Then, the BSS is performed on the multiple echoes obtained after the DBF processing. Finally, the highly separated echo signal can be obtained. In this scheme, there is no need to perform the direction of arrival (DOA) estimation before the DBF processing, which saves valuable computing resources. In addition, to verify the proposed scheme, point target and distributed target simulations based on the 16-channel data of an elevation X-band DBF-SAR system are carried out. The results of point targets indicate that the residual echo caused by rough terrain can be reduced by more than 14 dB using the proposed scheme. The proposed scheme can be directly implemented into existing SAR systems; thus, it does not increase the complexity of the system design. The scheme has the potential to be applied to future spaceborne SAR missions.

Funder

National Science Fund under Grant

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3