Evaluating Optical Remote Sensing Methods for Estimating Leaf Area Index for Corn and Soybean

Author:

Nandan RohitORCID,Bandaru VaraprasadORCID,He Jiaying,Daughtry CraigORCID,Gowda Prasanna,Suyker Andrew E.

Abstract

The leaf area index (LAI) is a key crop biophysical variable influencing many vegetation processes. Spatial LAI estimates are essential to develop and improve spatial modeling tools to monitor vegetation conditions at large regional scales. Numerous optical remote sensing methods have been explored to retrieve crop-specific LAI at a regional scale using satellite observations. However, a major challenge is selecting a method that performance well under various conditions without local scale calibration. As such, we assessed the performance of existing statistical and physical approaches, developed based on parametric, non-parametric and radiative transfer model (RTM)-look-up-table based inversion, using field observations from two geographically distant locations and Landsat 5, 7, and 8 satellite observations. These methods were implemented for corn and soybeans cultivated at two locations in the U.S (i.e., Mead, Nebraska, and Bushland, Texas). The evaluation metrics (i.e., Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R2)) were used to study the performance of each method, and then the methods were ranked based on these metrics. Our study showed that overall parametric methods outperformed other methods. The RMSE (MAE) for the top five methods was less than 1.3 (0.95) for corn and 1.0 (0.8) for soybeans, irrespective of location. Even though they outperformed, parametric methods exhibited inconsistency in their performance. For instance, the SR_CA_cross method ranked 1 for corn, however, it performed poorly for soybean (ranked 15). The non-parametric methods showed moderate accuracy partly due to the availability of a smaller number of observations for training. The RTM-LUT inversion physical-based approach was found to perform reasonably well RMSE (MAE) less than 1.5 (1.0) consistently irrespective of location and crop, implying that this approach is more suitable for regional-scale LAI estimation. The results of this study highlighted the drawbacks and advantages of available optical remote sensing approaches to estimate LAI for corn and soybean crops using Landsat imagery. These results are of interest for remote sensing and modeling communities developing spatial-scale approaches to model and monitor agricultural vegetation.

Funder

National Aeronautics and Space Administration

National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3