A High Spatiotemporal Enhancement Method of Forest Vegetation Leaf Area Index Based on Landsat8 OLI and GF-1 WFV Data

Author:

Luo Xin1,Jin Lili2,Tian Xin1,Chen Shuxin1,Wang Haiyi1

Affiliation:

1. Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China

2. Shijiazhuang Hutuo River Urban Forest Park, Shijiazhuang Hutuo River State Owned Forest Farm, Shijiazhuang 050051, China

Abstract

The leaf area index (LAI) is a crucial parameter for analyzing terrestrial ecosystem carbon cycles and global climate change. Obtaining high spatiotemporal resolution forest stand vegetation LAI products over large areas is essential for an accurate understanding of forest ecosystems. This study takes the northwestern part of the Inner Mongolia Autonomous Region (the northern section of the Greater Khingan Mountains) in northern China as the research area. It also generates the LAI time series product of the 8-day and 30 m forest stand vegetation growth period from 2013 to 2017 (from the 121st to the 305th day of each year). The Simulated Annealing-Back Propagation Neural Network (SA-BPNN) model was used to estimate LAI from Landsat8 OLI, and the multi-period GaoFen-1 WideField-View satellite images (GF-1 WFV) and the spatiotemporal adaptive reflectance fusion mode (STARFM) was used to predict high spatiotemporal resolution LAI by combining inversion LAI and Global LAnd Surface Satellite-derived vegetation LAI (GLASS LAI) products. The results showed the following: (1) The SA-BPNN estimation model has relatively high accuracy, with R2 = 0.75 and RMSE = 0.38 for the 2013 LAI estimation model, and R2 = 0.74 and RMSE = 0.17 for the 2016 LAI estimation model. (2) The fused 30 m LAI product has a good correlation with the LAI verification of the measured sample site (R2 = 0.8775) and a high similarity with the GLASS LAI product. (3) The fused 30 m LAI product has a high similarity with the GLASS LAI product, and compared with the GLASS LAI interannual trend line, it accords with the growth trend of plants in the seasons. This study provides a theoretical and technical reference for forest stand vegetation growth period LAI spatiotemporal fusion research based on high-score data, and has an important role in exploring vegetation primary productivity and carbon cycle changes in the future.

Funder

The National Science and Technology Major Project of China’s High Resolution Earth Observation System

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3