A Change Detection Method Based on Multi-Scale Adaptive Convolution Kernel Network and Multimodal Conditional Random Field for Multi-Temporal Multispectral Images

Author:

Feng ShouORCID,Fan Yuanze,Tang Yingjie,Cheng Hao,Zhao Chunhui,Zhu Yaoxuan,Cheng Chunhua

Abstract

Multispectral image change detection is an important application in the field of remote sensing. Multispectral images usually contain many complex scenes, such as ground objects with diverse scales and proportions, so the change detection task expects the feature extractor is superior in adaptive multi-scale feature learning. To address the above-mentioned problems, a multispectral image change detection method based on multi-scale adaptive kernel network and multimodal conditional random field (MSAK-Net-MCRF) is proposed. The multi-scale adaptive kernel network (MSAK-Net) extends the encoding path of the U-Net, and designs a weight-sharing bilateral encoding path, which simultaneously extracts independent features of bi-temporal multispectral images without introducing additional parameters. A selective convolution kernel block (SCKB) that can adaptively assign weights is designed and embedded in the encoding path of MSAK-Net to extract multi-scale features in images. MSAK-Net retains the skip connections in the U-Net, and embeds an upsampling module (UM) based on the attention mechanism in the decoding path, which can give the feature map a better expression of change information in both the channel dimension and the spatial dimension. Finally, the multimodal conditional random field (MCRF) is used to smooth the detection results of the MSAK-Net. Experimental results on two public multispectral datasets indicate the effectiveness and robustness of the proposed method when compared with other state-of-the-art methods.

Funder

National Natural Science Foundation of China

the Heilongjiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3