The Spectral-Spatial Joint Learning for Change Detection in Multispectral Imagery

Author:

Zhang WuxiaORCID,Lu Xiaoqiang

Abstract

Change detection is one of the most important applications in the remote sensing domain. More and more attention is focused on deep neural network based change detection methods. However, many deep neural networks based methods did not take both the spectral and spatial information into account. Moreover, the underlying information of fused features is not fully explored. To address the above-mentioned problems, a Spectral-Spatial Joint Learning Network (SSJLN) is proposed. SSJLN contains three parts: spectral-spatial joint representation, feature fusion, and discrimination learning. First, the spectral-spatial joint representation is extracted from the network similar to the Siamese CNN (S-CNN). Second, the above-extracted features are fused to represent the difference information that proves to be effective for the change detection task. Third, the discrimination learning is presented to explore the underlying information of obtained fused features to better represent the discrimination. Moreover, we present a new loss function that considers both the losses of the spectral-spatial joint representation procedure and the discrimination learning procedure. The effectiveness of our proposed SSJLN is verified on four real data sets. Extensive experimental results show that our proposed SSJLN can outperform the other state-of-the-art change detection methods.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3