Global and Local Assessment of Image Classification Quality on an Overall and Per-Class Basis without Ground Reference Data

Author:

Foody Giles M.ORCID

Abstract

Ground reference data are typically required to evaluate the quality of a supervised image classification analysis used to produce a thematic map from remotely sensed data. Acquiring a suitable ground data set for a rigorous assessment of classification quality can be a major challenge. An alternative approach to quality assessment is to use a model-based method such as can be achieved with a latent class analysis. Previous research has shown that the latter can provide estimates of class areal extent for a non-site specific accuracy assessment and yield estimates of producer’s accuracy which are commonly used in site-specific accuracy assessment. Here, the potential for quality assessment via a latent class analysis is extended to show that an estimate of a complete confusion matrix can be predicted which allows a suite of standard accuracy measures to be generated to indicate global quality on an overall and per-class basis. In addition, information on classification uncertainty may be used to illustrate classification quality on a per-pixel basis and hence provide local information to highlight spatial variations in classification quality. Classifications of imagery from airborne and satellite-borne sensors were used to illustrate the potential of the latent class analysis with results compared against those arising from the use of a conventional ground data set.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3