Assessment of Forest Ecological Function Levels Based on Multi-Source Data and Machine Learning

Author:

Fang Ning123,Yao Linyan4,Wu Dasheng123,Zheng Xinyu123,Luo Shimei5

Affiliation:

1. College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China

2. Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China

3. Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou 311300, China

4. Zhejiang Public Information Industry Co., Ltd., Hangzhou 310000, China

5. College of Economic and Management, Zhejiang A&F University, Hangzhou 311300, China

Abstract

Forest ecological function is one of the key indicators reflecting the quality of forest resources. The traditional weighting method to assess forest ecological function is based on a large amount of ground survey data; it is accurate but costly and time-consuming. This study utilized three machine learning algorithms to estimate forest ecological function levels based on multi-source data, including Sentinel-2 optical remote sensing images and digital elevation model (DEM) and forest resource planning and design survey data. The experimental results showed that Random Forest (RF) was the optimal model, with overall accuracy of 0.82, recall of 0.66, and F1 of 0.62, followed by CatBoost (overall accuracy = 0.82, recall = 0.62, F1 = 0.58) and LightGBM (overall accuracy = 0.76, recall = 0.61, F1 = 0.58). Except for the indicators from remote sensing images and DEM data, the five ground survey indicators of forest origin (QI_YUAN), tree age group (LING_ZU), forest category (LIN_ZHONG), dominant species (YOU_SHI_SZ), and tree age (NL) were used in the modeling and prediction. Compared to the traditional methods, the proposed algorithm has lower cost and stronger timeliness.

Funder

the Zhejiang Forestry Science and Technology Project

the National Natural Science Foundation of China

the Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3