Resilience Assessment and Critical Point Identification for Urban Water Supply Systems under Uncertain Scenarios

Author:

Liu Jinning,Shao ZhiguoORCID,Wang Wei

Abstract

The urban water supply system environment is becoming more complicated and unpredictable than ever before in the context of global climate change and expanding urbanization. Existing studies have adopted either static or dynamic approaches to assess the resilience of water supply systems without combining the two. Previous literature mostly establishes rigid quantitative metrics for resilience assessment, often without depicting the dynamics and adaptability of system resilience. For example, these studies usually fail to provide a critical point for identifying system resilience. To accurately describe the dynamics and adaptability of water supply system resilience under uncertain scenarios, in this study, we constructed a comprehensive framework based on the qualitative assessment of the input parameters, combining static and dynamic assessment, with the latter playing a dominant role based on the system perspective of pressure–state–influence–response. Taking Qingdao as a case study, we combined this framework with the system resilience theory, and statically assessed the five types of capitals and three attributes of resilience with the capital portfolio approach (CPA). Then, we dynamically assessed the resilience of urban water supply systems and identified critical points with the dynamic socio-technical model coupled with system resilience and the fitting analysis method. The results are as follows: (1) the static assessment results demonstrate an imbalanced development in the levels of the five types of capitals (financial capital, management efficiency, infrastructure, available water resources, and adaptation) and three attributes (robustness, recoverability, and adaptability) in the water supply systems of Qingdao. (2) The dynamic assessment results show that the current resilience trajectory of the water supply systems in Qingdao is that of a city in transition. (3) The fitting analysis shows that robustness (RB) has a linear relationship with resilience, recoverability (RE) has a non-linear relationship with resilience, and the critical points are RB = 0.70 and RE = 1.20. The research findings provide a reference for studying resilience mechanisms, internal attribute relationships, and resilience enhancement measures of urban water supply systems.

Funder

National Natural Science Foundation of China

Humanities and Social Science Research Youth Fund Project of Ministry of Education

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3