Building resilience for an uncertain drinking water future

Author:

Huang Jingyan12,Bixler Taler2,Mo Weiwei12ORCID

Affiliation:

1. Natural Resources & Earth Systems Science Program University of New Hampshire Durham New Hampshire USA

2. Department of Civil and Environmental Engineering University of New Hampshire Durham New Hampshire USA

Abstract

AbstractEnhancing drinking water resilience has become increasingly important. However, a comprehensive analysis of drinking water emergency countermeasures is lacking. This study evaluated eight countermeasures including monitoring, local alternatives, reclaimed water, interconnection, bulk water, pre‐packaged water, emergency treatment, and isolation valves from resilience and sustainability (i.e., life cycle cost) perspectives. While countermeasures such as interconnections perform relatively well from both perspectives, there is a clear trade‐off between resilience and cost. Local alternatives and emergency treatment respond quickly and provide sustained supply during emergencies but may incur higher costs. Bulk water and pre‐packaged water are typically inexpensive but have limited supply capacity and take time to distribute. As future threats are likely to become more frequent and prolonged, it is prudent for service providers to invest in countermeasures that perform well in both resilience and cost and use an integrated approach that combines high capital projects with bulk/pre‐packaged water contracts.

Funder

National Science Foundation

Publisher

Wiley

Subject

Water Science and Technology,Environmental Engineering,General Chemistry,Filtration and Separation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3