Making urban water smart: the SMART-WATER solution

Author:

Antzoulatos Gerasimos1,Mourtzios Christos2,Stournara Panagiota3,Kouloglou Ioannis-Omiros1,Papadimitriou Nikolaos2,Spyrou Dimitrios3,Mentes Alexandros3,Nikolaidis Efstathios1,Karakostas Anastasios1,Kourtesis Dimitrios2,Vrochidis Stefanos1,Kompatsiaris Ioannis1

Affiliation:

1. Information Technologies Institute (ITI), Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece

2. Research and Development Department, APIFON S.A. Telecommunications, Thessaloniki, Greece

3. Thessaloniki Water Supply and Sewerage Company S.A. (EYATH S.A.), Tsimiski 98, 54622 Thessaloniki, Greece

Abstract

Abstract The rise of Internet of Things (IoT), coupled with the advances in Artificial Intelligence technologies and cloud-based applications, have caused fundamental changes in the way societies behave. Enhanced connectivity and interactions between physical and cyber worlds create ‘smart’ solutions and applications to serve society's needs. Water is a vital resource and its management is a critical issue. ICT achievements gradually deployed within the water industry provide an alternative, smart and novel way to improve water management efficiently. Contributing to this direction, we propose a unified framework for urban water management, exploiting state-of-the-art IoT solutions for remote telemetry and control of water consumption in combination with machine learning-based processes. The SMART-WATER platform aims to foster water utility companies by enhancing water management and decision-making processes, providing innovative solutions to consumers for smart water utilisation.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference49 articles.

1. 3GPP Org. 2016 Standardization of NB-IOT completed. pp. 1. www.3gpp.org/news-events/3gpp-news/1785-nb_iot_complete (accessed 19 February 2016).

2. Wireless Middleware Solutions for Smart Water Metering

3. Secure multi-protocol gateway for Internet of Things;Amiruddin,2018

4. Overview, Comparative Assessment and Recommendations of Forecasting Models for Short-Term Water Demand Prediction

5. Short-term water demand forecasting using machine learning techniques

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3