Author:
Huh Jaeseok,Park Jonghun,Shin Dongmin,Choi Yerim
Abstract
To train skilled unmanned combat aerial vehicle (UCAV) operators, it is important to establish a real-time training environment where an enemy appropriately responds to the action performed by a trainee. This can be addressed by constructing the inference method for the behavior of a UCAV operator from given simulation log data. Through this method, the virtual enemy is capable of performing actions that are highly likely to be made by an actual operator. To achieve this, we propose a hybrid sequence (HS) kernel-based hierarchical support vector machine (HSVM) for the behavior inference of a UCAV operator. Specifically, the HS kernel is designed to resolve the heterogeneity in simulation log data, and HSVM performs the behavior inference in a sequential manner considering the hierarchical structure of the behaviors of a UCAV operator. The effectiveness of the proposed method is demonstrated with the log data collected from the air-to-air combat simulator.
Funder
Gyeonggi-do Regional Research Center
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献