Affiliation:
1. School of Aerospace Systems, University of Cincinnati, 2600 Clifton Ave., Cincinnati, OH 45221, USA
2. Air Force Research Laboratories, Wright Patterson Air Force Base, OH 45433, USA
Abstract
This study introduces the technique of Genetic Fuzzy Trees (GFTs) through novel application to an air combat control problem of an autonomous squadron of Unmanned Combat Aerial Vehicles (UCAVs) equipped with next-generation defensive systems. GFTs are a natural evolution to Genetic Fuzzy Systems, in which multiple cascading fuzzy systems are optimized by genetic methods. In this problem a team of UCAV's must traverse through a battle space and counter enemy threats, utilize imperfect systems, cope with uncertainty, and successfully destroy critical targets. Enemy threats take the form of Air Interceptors (AIs), Surface to Air Missile (SAM) sites, and Electronic WARfare (EWAR) stations. Simultaneous training and tuning a multitude of Fuzzy Inference Systems (FISs), with varying degrees of connectivity, is performed through the use of an optimized Genetic Algorithm (GA). The GFT presented in this study, the Learning Enhanced Tactical Handling Algorithm (LETHA), is able to create controllers with the presence of deep learning, resilience to uncertainties, and adaptability to changing scenarios. These resulting deterministic fuzzy controllers are easily understandable by operators, are of very high performance and efficiency, and are consistently capable of completing new and different missions not trained for.
Publisher
World Scientific Pub Co Pte Lt
Subject
Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献