Effects of Incorporation of Porous Tapioca Starch on the Quality of White Salted (Udon) Noodles

Author:

Pokharel Anju1,Jaidka Randhir Kumar1,Sruthi N. U.12,Bhattarai Rewati Raman1

Affiliation:

1. School of Molecular Life Science, Faculty of Science and Engineering, Curtin University, Bentley, Perth, WA 6102, Australia

2. Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India

Abstract

White salted (udon) noodles are one of the major staple foods in Asian countries, particularly in Japan. Noodle manufacturers prefer the Australian noodle wheat (ANW) varieties to produce high-quality udon noodles. However, the production of this variety has reduced significantly in recent years, thus affecting the Japanese noodle market. Noodle manufacturers often add tapioca starch to compensate for the flour scarcity; however, the noodle-eating quality and texture are significantly reduced. This study, therefore, investigated the effect of the addition of porous tapioca starch on the cooking quality and texture of udon noodles. For this, tapioca starch was initially subjected to enzyme treatment, ultrasonication, and a combination of both to produce a porous starch where a combined enzyme (0.4% alpha amylase)–ultrasound treatment (20 kHz) yielded a porous starch with increased specific surface area and better absorbent properties which are ideal for udon noodle manufacturing, Later, udon noodles were prepared using three varieties of ANW, a hard Mace variety, and commercial wheat flour by incorporating the prepared porous tapioca starch at a concentration of 5% and 10% of dry ingredients. Adding this porous starch resulted in a lower cooking time with higher water absorption and desirable lower cooking loss compared to the control sample with 5% of the porous starch chosen as the optimum formulation. Increasing the level of the porous starch reduced the hardness of the noodles whilst maintaining the desired instrumental texture. Additionally, a multivariate analysis indicated a good correlation between responses’ optimum cooking time and water absorption capacity as well as turbidity and cooking loss, and a cluster analysis grouped noodle samples prepared from different varieties into the same clusters based on the porous starch added, indicating the possibility of different market strategies to improve the quality of the udon noodles produced from different wheat varieties.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3