Comparative Genomics Analysis Provides New Insights into High Ethanol Tolerance of Lactiplantibacillus pentosus LTJ12, a Novel Strain Isolated from Chinese Baijiu

Author:

Wang Jiali,Lu Chengshun,Xu Qiang,Li ZhongyuanORCID,Song Yajian,Zhou Sa,Guo Le,Zhang Tongcun,Luo Xuegang

Abstract

Lactic acid bacteria have received a significant amount of attention due to their probiotic characteristics. The species Lactiplantibacillus plantarum and Lactiplantibacillus pentosus are genotypically closely related, and their phenotypes are so similar that they are easily confused and mistaken. In the previous study, an ethanol-resistant strain, LTJ12, isolated from the fermented grains of soy sauce aroma type baijiu in North China, was originally identified as L. plantarum through a 16S rRNA sequence analysis. Here, the genome of strain LTJ12 was further sequenced using PacBio and Illumina sequencing technology to obtain a better understanding of the metabolic pathway underlying its resistance to ethanol stress. The results showed that the genome of strain LTJ12 was composed of one circular chromosome and three circular plasmids. The genome size is 3,512,307 bp with a GC content of 46.37%, and the number of predicted coding genes is 3248. Moreover, by comparing the coding genes with the GO (Gene Ontology), COG (Cluster of Orthologous Groups) and KEGG (Kyoto Encyclopedia of Genes and Genomes) databases, the functional annotation of the genome and an assessment of the metabolic pathways were performed, with the results showing that strain LTJ12 has multiple genes that may be related to alcohol metabolism and probiotic-related genes. Antibiotic resistance gene analysis showed that there were few potential safety hazards. Further, after conducting the comparative genomics analysis, it was found that strain LTJ12 is L. pentosus but not L. plantarum, but it has more functional genes than other L. pentosus strains that are mainly related to carbohydrate transport and metabolism, transcription, replication, recombination and repair, signal transduction mechanisms, defense mechanisms and cell wall/membrane/envelope biogenesis. These unique functional genes, such as gene 2754 (encodes alcohol dehydrogenase), gene 3093 (encodes gamma-D-glutamyl-meso-diaminopimelate peptidase) and some others may enhance the ethanol tolerance and alcohol metabolism of the strain. Taken together, L. pentosus LTJ12 might be a potentially safe probiotic with a high ethanol tolerance and alcohol metabolism. The findings of this study will also shed light on the accurate identification and rational application of the Lactiplantibacillus species.

Funder

the Key Research and Development Program of Ningxia Province

the National Natural Science Foundation of China

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3