Statistic and Network Features of RGB and Hyperspectral Imaging for Determination of Black Root Mold Infection in Apples

Author:

Sha Wen12,Hu Kang1,Weng Shizhuang3

Affiliation:

1. School of Electrical Engineering and Automation, Anhui University, 111 Jiulong Road Hefei, Hefei 230601, China

2. Engineering Research Center of Autonomous Unmanned System Technology, Ministry of Education, Anhui University, 111 Jiulong Road Hefei, Hefei 230601, China

3. National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, 111 Jiulong Road Hefei, Hefei 230601, China

Abstract

Apples damaged by black root mold (BRM) lose moisture, vitamins, and minerals as well as carry dangerous toxins. Determination of the infection degree can allow for customized use of apples, reduce financial losses, and ensure food safety. In this study, red-green-blue (RGB) imaging and hyperspectral imaging (HSI) are combined to detect the infection degree of BRM in apple fruits. First, RGB and HSI images of healthy, mildly, moderately, and severely infected fruits are measured, and those with effective wavelengths (EWs) are screened from HSI by random frog. Second, the statistic and network features of images are extracted by using color moment and convolutional neural network. Meanwhile, random forest (RF), K-nearest neighbor, and support vector machine are used to construct classification models with the above two features of RGB and HSI images of EWs. Optimal results with the 100% accuracy of training set and 96% accuracy of prediction set are obtained by RF with the statistic and network features of the two images, outperforming the other cases. The proposed method furnishes an accurate and effective solution for determining the BRM infection degree in apples.

Funder

Key Research and Development Program of Anhui Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3