A Discriminative Model for Early Detection of Anthracnose in Strawberry Plants Based on Hyperspectral Imaging Technology

Author:

Liu Chao1,Cao Yifei1,Wu Ejiao2,Yang Risheng1,Xu Huanliang1,Qiao Yushan12ORCID

Affiliation:

1. College of Horticulture, Nanjing Agricultural University, Nanjing 210014, China

2. Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China

Abstract

Strawberry anthracnose, caused by Colletotrichum spp., is a major disease that causes tremendous damage to cultivated strawberry plants (Fragaria × ananassa Duch.). Examining and distinguishing plants potentially carrying the pathogen is one of the most effective ways to prevent and control strawberry anthracnose disease. Herein, we used this method on Colletotrichum gloeosporioides at the crown site on indoor strawberry plants and established a classification and distinguishing model based on measurement of the spectral and textural characteristics of the disease-free zone near the disease center. The results, based on the successive projection algorithm (SPA), competitive adaptive reweighted sampling (CARS), and interval random frog (IRF), extracted 5, 14, and 11 characteristic wavelengths, respectively. The SPA extracted fewer effective characteristic wavelengths, while IRF covered more information. A total of 12 dimensional texture features (TFs) were extracted from the first three minimum noise fraction (MNF) images using a grayscale co-occurrence matrix (GLCM). The combined dataset modeling of spectral and TFs performed better than single-feature modeling. The accuracy rates of the IRF + TF + BP model test set for healthy, asymptomatic, and symptomatic samples were 99.1%, 93.5%, and 94.5%, the recall rates were 100%, 94%, and 93%, and the F1 scores were 0.9955, 0.9375, and 0.9374, respectively. The total modeling time was 10.9 s, meaning that this model demonstrated the best comprehensive performance of all the constructed models. The model lays a technical foundation for the early, non-destructive detection of strawberry anthracnose.

Funder

Jiangsu Agricultural Science and Technology Innovation Fund

National Natural Science Foundation of China

Open Competition Project of Seed Industry Revitalization of Jiangsu Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3