Affiliation:
1. Chair of Brewing and Beverage Technology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
Abstract
An ultrasonic wave mode-based method for density measurement in highly foamed batters was developed. Therefore, a non-contact ultrasonic sensor system was designed to generate signals for batch-wise processes. An ultrasonic sensor, containing a piezoelectric ceramic at the fundamental longitudinal frequency of 2 MHz, was used to take impedance measurements in pulse-echo mode. The ultrasonic signals were processed and analysed wave-mode wise, using a feature-driven approach. The measurements were carried out for different mixing times within a container, with the attached ultrasonic sensor. Within the biscuit batter, the change to the ultrasonic signals caused by density changes during the batter-mixing process was monitored (R2 = 0.96). The density range detected by the sensor ranges between 500 g/L and 1000 g/L. The ultrasonic sensor system developed also shows a reasonable level of accuracy for the measurements of biscuit batter variations (R2 > 0.94). The main benefit of this novel technique, which comprises multiple wave modes for signal features and combines these features with the relevant process parameters, leads to a more robust system as regards to multiple interference factors.
Funder
AiF
DLR
German Ministry of Economics and Climate Action
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献