High Growing Temperature Changes Nutritional Value of Broccoli (Brassica oleracea L. convar. botrytis (L.) Alef. var. cymosa Duch.) Seedlings

Author:

Gmižić Daria1,Pinterić Marija2ORCID,Lazarus Maja3ORCID,Šola Ivana1ORCID

Affiliation:

1. Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia

2. Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia

3. Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia

Abstract

High temperature (HT) causes physiological and biochemical changes in plants, which may influence their nutritional potential. This study aimed to evaluate the nutritional value of broccoli seedlings grown at HT on the level of phytochemicals, macro- and microelements, antioxidant capacity, and their extracts’ in vitro cytotoxicity. Total phenols, soluble sugars, carotenoids, quercetin, sinapic, ferulic, p-coumaric, and gallic acid were induced by HT. Contrarily, total flavonoids, flavonols, phenolic acids, hydroxycinnamic acids, proteins, glucosinolates, chlorophyll a and b, and porphyrins were reduced. Minerals As, Co, Cr, Hg, K, Na, Ni, Pb, Se, and Sn increased at HT, while Ca, Cd, Cu, Mg, Mn, and P decreased. ABTS, FRAP, and β-carotene bleaching assay showed higher antioxidant potential of seedlings grown at HT, while DPPH showed the opposite. Hepatocellular carcinoma cells were the most sensitive toward broccoli seedling extracts. The significant difference between control and HT-grown broccoli seedling extracts was recorded in mouse embryonal fibroblasts and colorectal carcinoma cells. These results show that the temperature of seedling growth is a critical factor for their nutritional value and the biological effects of their extracts and should definitely be taken into account when growing seedlings for food purposes.

Funder

Croatian Science Foundation research project “Indirect effect of global warming on mammals physiological parameters via high temperature-stressed plant diet (TEMPHYS)“

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3