Production of High-Quality Wheat Sprouts of Strong Antioxidant Capacity: Process Optimization and Regulation Mechanism of Red Light Treatment

Author:

Zhang Jing1,Wang Chunping1,Fang Weiming1,Yang Runqiang2ORCID,Yin Yongqi1

Affiliation:

1. College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China

2. College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China

Abstract

Light treatment is an innovative method to enhance the synthesis of secondary metabolites in plants and improve the quality of plant-based food ingredients. This study investigated the effects of red light treatment on the physiological and biochemical changes during wheat germination, aiming to produce high-quality wheat sprouts with strong antioxidant capacity. Using response surface methodology, the study optimized the conditions for phenolic accumulation in wheat sprouts under red light treatment and explored the molecular mechanisms behind the enhancement of total phenolic content (TPC) and quality. The results indicated that red light treatment significantly increased the TPC in wheat sprouts. The highest TPC, reaching 186.61 μg GAE/sprout, was observed when wheat sprouts were exposed to red light at an intensity of 412 μmol/m²/s for 18.2 h/d over four days. Compared to no light, red light treatment significantly increased the content of photosynthetic pigments (chlorophyll and carotenoids). Red light treatment notably heightened the levels of both free and bound phenolic in the germinating wheat. Red light treatment markedly boosted the activities and relative gene expression levels of enzymes related to phenolic biosynthesis, including phenylalanine ammonia-lyase, cinnamate-4-hydroxylase, and 4-coumarate-CoA ligase. Additionally, red light treatment enhanced the antioxidant capacity of wheat sprouts by improving the activity and gene expression of four key antioxidant enzymes, thereby promoting growth and germination. This research suggested that red light treatment is an effective strategy for stimulating total phenolic biosynthesis, enhancing antioxidant capacity, and producing highly nutritious wheat sprouts, thus laying the groundwork for developing total phenolic-enriched wheat sprouts as valuable food ingredients in the future.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3