Hydrophobic Mesoporous Silica-Coated Solid-Phase Microextraction Arrow System for the Determination of Six Biogenic Amines in Pork and Fish

Author:

Chen Mengfei1,Lan Hangzhen1,Pan Daodong1,Zhang Tao1

Affiliation:

1. State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China

Abstract

In this study, a functionalized mesoporous silica-coated solid-phase microextraction (SPME) Arrow system was developed for the enrichment of six biogenic amines (BAs) from pork and fish samples before gas chromatographic separation with a mass spectrometer as a detector. MCM-41 was utilized as the substrate material and thereby functionalized by titanate and sodium dodecyl sulfate to adjust its surface acidity and hydrophobicity, respectively. The functionalized MCM-41 (named as MCM-T-H) was coated on a bare SPME Arrow using the dipping method and polyacrylonitrile was used as the adhesive. The extraction capacity and selectivity of the MCM-T-H-SPME Arrow for six kinds of derivatized BAs were studied and compared with commercial SPME Arrows. Experimental parameters, e.g., sample volume, derivatization reagent amount, extraction time, and desorption time, which have a dramatic effect on SPME Arrow pretreatment, were optimized. Acidity enhanced MCM-T-H coating showed a much higher affinity to derivatized BAs compared to a commercial SPME Arrow in terms of extraction capacity. In addition, hydrophobicity modification significantly reduced the interference of water molecules on the interaction between MCM-T-H and the derivatized BAs. The MCM-T-H-SPME Arrow showed efficient separation and enrichment capacity for derivatized BAs from complex matrices and therefore, the sample pretreatment time was saved. According to the experimental results, the optimal condition was to add 10 μL derivatization reagent to a 10 mL sample and maintain an agitation speed of 1250 r min−1. The MCM-T-H-SPME showed excellent reproducibility (RSD < 9.8%) and fast adsorption kinetics (30 min) and desorption kinetics (5 min) for derivatized BAs under optimal conditions. In summary, the MCM-T-H-SPME Arrow based method was employed for accurate monitoring of the variations of BAs in pork and fish, and good results were achieved.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Key R&D Program of Zhejiang

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3