Machine Learning Algorithms Applied to Semi-Quantitative Data of the Volatilome of Citrus and Other Nectar Honeys with the Use of HS-SPME/GC–MS Analysis, Lead to a New Index of Geographical Origin Authentication

Author:

Karabagias Ioannis Konstantinos1ORCID,Nayik Gulzar Ahmad2ORCID

Affiliation:

1. Department of Food Science & Technology, School of Agricultural Sciences, University of Patras, G. Seferi 2, 30100 Agrinio, Greece

2. Department of Food Science & Technology, Government Degree College Shopian, Jammu & Kashmir 192303, India

Abstract

The scope of the current study was to monitor if semi-quantitative data of volatile compounds (volatilome) of citrus honey (ch) produced in different countries could potentially lead to a new index of citrus honey authentication using specific ratios of the identified volatile compounds in combination with machine learning algorithms. In this context, the semi-quantitative data of the volatilome of 38 citrus honey samples from Egypt, Morocco, Greece, and Spain (determined by headspace solid phase microextraction coupled to gas chromatography mass spectrometry (HS-SPME/GC–MS)) was subjected to supervised and unsupervised chemometrics. Results showed that honey samples could be classified according to the geographical origin based on specific volatile compounds. Data were further evaluated with additional nectar honey samples introduced in the multivariate statistical analysis model and the classification results were not affected. Specific volatile compounds contributed to the discrimination of citrus honey in different amounts according to geographical origin. These were lilac aldehyde D, dill ether, 2-methylbutanal, heptane, benzaldehyde, α,4-dimethyl-3-cyclohexene-1-acetaldehyde, and herboxide (isomer II). The numerical data of these volatile compounds was summed up and divided by the total semi-quantitative volatile content (Rch, Karabagias–Nayik index) of citrus honey, according to geographical origin. Egyptian citrus honey had a value of Rch = 0.35, Moroccan citrus honey had a value of Rch = 0.29, Greek citrus honey had a value of Rch = 0.04, and Spanish citrus honey had a value of Rch = 0.27, leading to a new hypothesis and a complementary index for the control of citrus honey authentication.

Funder

University of Patras

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3