Investigation into the Physicochemical and Textural Properties of an Iron-Rich 3D-Printed Hybrid Food

Author:

Schiell Coline12,Portanguen Stéphane2ORCID,Scislowski Valérie1,Astruc Thierry2ORCID,Mirade Pierre-Sylvain2

Affiliation:

1. ADIV (Association pour le Développement de l’Institut de la Viande), 63039 Clermont-Ferrand, France

2. Université Clermont Auvergne, INRAE, UR370 Qualité des Produits Animaux (QuaPA), 63122 Saint-Genès Champanelle, France

Abstract

In the context of dietary transition, blending animal-source protein with plant-source protein offers a promising way to exploit their nutritional complementarity. This study investigates the feasibility of formulating an iron-rich hybrid food product blending plant-source and animal-source protein ingredients for iron-deficient populations. Using a commercial 3D-food printer, two different-shaped products composed mainly of pork and chicken liver and red lentils were designed. After baking at 180 °C with 70% steam, the 3D-printed products were packed under two different modified atmospheres (MAP): O2-MAP (70% oxygen + 30% carbon dioxide) and N2-MAP (70% nitrogen + 30% carbon dioxide) and stored at 4 °C. pH, water content, aw, lipid oxidation, heme iron and non-heme iron contents and textural properties were measured after 0, 7, 14 and 21 days in storage. After 21 days in storage, the 3D-printed hybrid products had an iron content of around 13 mg/100 g, regardless of the product form and packaging method. However, O2-MAP products showed significant (p < 0.05) time–course changes from day 0 to day 7, i.e., an increase in lipid oxidation, a decrease in heme iron content and an increase in product hardness, gumminess and chewiness. This work opens prospects for developing hybrid food products that upvalue animal by-products.

Funder

Association Nationale de la Recherche et de la Technologie

Bpifrance

the joint technological unit NEWCARN

the association for technical coordination of the agri-food industry

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3