Affiliation:
1. College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
Abstract
The development of green, biomedical hydrogels using natural polymers is of great significance. From this viewpoint, guar gum (GG) has been widely used for hydrogel preparation; however, its mechanical strength and adhesion often cannot satisfy the biomedical application. Therefore, in the present study, gelatin and a cellulose nanocrystal (CNC) were first applied to overcome the defects of guar gum hydrogel. Dopamine was self−polymerized into polydopamine (PDA) on the gelatin chain at alkaline condition, and gelatin−polydopamine (Gel−PDA) further cross−linked with guar gum and CNC via the borate−didiol bond, intramolecular Schiff base reaction, and Michael addition. CNC not only interacted with guar gum using borate chemistry but also acted as a mechanical reinforcer. The obtained Gel−PDA+GG+CNC hydrogel had an excellent self−healing capacity, injectability, and adhesion due to the catechol groups of PDA. Moreover, dopamine introduction caused a significant increase in the anti−oxidant activity. This hydrogel was cyto− and hemo−compatible, which implies a potential usage in the medical field.
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献