Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications

Author:

Zhao Lingling1ORCID,Zhou Yifan1,Zhang Jiaying12,Liang Hongze1ORCID,Chen Xianwu3,Tan Hui2

Affiliation:

1. School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China

2. Center for Child Care and Mental Health (CCCMH), Shenzhen Children’s Hospital, Shenzhen 518038, China

3. The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315211, China

Abstract

Hydrogels prepared from natural polymer have attracted extensive attention in biomedical fields such as drug delivery, wound healing, and regenerative medicine due to their good biocompatibility, degradability, and flexibility. This review outlines the commonly used natural polymer in hydrogel preparation, including cellulose, chitosan, collagen/gelatin, alginate, hyaluronic acid, starch, guar gum, agarose, and dextran. The polymeric structure and process/synthesis of natural polymers are illustrated, and natural polymer-based hydrogels including the hydrogel formation and properties are elaborated. Subsequently, the biomedical applications of hydrogels based on natural polymer in drug delivery, tissue regeneration, wound healing, and other biomedical fields are summarized. Finally, the future perspectives of natural polymers and hydrogels based on them are discussed. For natural polymers, novel technologies such as enzymatic and biological methods have been developed to improve their structural properties, and the development of new natural-based polymers or natural polymer derivatives with high performance is still very important and challenging. For natural polymer-based hydrogels, novel hydrogel materials, like double-network hydrogel, multifunctional composite hydrogels, and hydrogel microrobots have been designed to meet the advanced requirements in biomedical applications, and new strategies such as dual-cross-linking, microfluidic chip, micropatterning, and 3D/4D bioprinting have been explored to fabricate advanced hydrogel materials with designed properties for biomedical applications. Overall, natural polymeric hydrogels have attracted increasing interest in biomedical applications, and the development of novel natural polymer-based materials and new strategies/methods for hydrogel fabrication are highly desirable and still challenging.

Funder

Natural Science Foundation of Zhejiang Province

Fundamental Research Funds for the Provincial Universities of Zhejiang

Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province

Natural Science Foundation of Guangdong Province

Shenzhen Science and Technology Innovation Commission

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3