Automatic Detection of Small Sample Apple Surface Defects Using ASDINet

Author:

Hu Xiangyun1,Hu Yaowen1,Cai Weiwei2ORCID,Xu Zhuonong1ORCID,Zhao Peirui3,Liu Xuyao1,She Qiutong3,Hu Yahui4,Li Johnny5ORCID

Affiliation:

1. College of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China

2. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China

3. College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China

4. Plant Protection Research Institute, Academy of Agricultural Sciences, Changsha 410125, China

5. Department of Soil and Water Systems, University of Idaho, Moscow, ID 83844, USA

Abstract

The appearance quality of apples directly affects their price. To realize apple grading automatically, it is necessary to find an effective method for detecting apple surface defects. Aiming at the problem of a low recognition rate in apple surface defect detection under small sample conditions, we designed an apple surface defect detection network (ASDINet) suitable for small sample learning. The self-developed apple sorting system collected RGB images of 50 apple samples for model verification, including non-defective and defective apples (rot, disease, lacerations, and mechanical damage). First, a segmentation network (AU-Net) with a stronger ability to capture small details was designed, and a Dep-conv module that could expand the feature capacity of the receptive field was inserted in its down-sampling path. Among them, the number of convolutional layers in the single-layer convolutional module was positively correlated with the network depth. Next, to achieve real-time segmentation, we replaced the flooding of feature maps with mask output in the 13th layer of the network. Finally, we designed a global decision module (GDM) with global properties, which inserted the global spatial domain attention mechanism (GSAM) and performed fast prediction on abnormal images through the input of masks. In the comparison experiment with state-of-the-art models, our network achieved an AP of 98.8%, and a 97.75% F1-score, which were higher than those of most of the state-of-the-art networks; the detection speed reached 39ms per frame, achieving accuracy-easy deployment and substantial trade-offs that are in line with actual production needs. In the data sensitivity experiment, the ASDINet achieved results that met the production needs under the training of 42 defective pictures. In addition, we also discussed the effect of the ASDINet in actual production, and the test results showed that our proposed network demonstrated excellent performance consistent with the theory in actual production.

Funder

Scientific Research Project of Education Department of Hunan Province

Changsha Municipal Natural Science Foundation

Natural Science Foundation of Hunan Province

Natural Science Foundation of China

Hunan Key Laboratory of Intelligent Logistics Technology

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3