Effect of Agaricus bisporus Polysaccharides on Human Gut Microbiota during In Vitro Fermentation: An Integrative Analysis of Microbiome and Metabolome

Author:

Duan Hui12,Yu Qun12,Ni Yang12,Li Jinwei123,Fan Liuping123ORCID

Affiliation:

1. State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China

2. School of Food Science and Technology, Jiangnan University, Wuxi 214122, China

3. National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China

Abstract

Agaricus bisporus polysaccharide (ABP) is an important active component in edible mushrooms, but its interaction with gut microbiota is unclear. Therefore, this study evaluated the effect of ABP on the composition and metabolites of human gut microbiota by in vitro batch fermentation. The main degrading bacteria for ABP were Bacteroides, Streptococcus, Enterococcus, Paraprevotella, Bifidobacterium, Lactococcus, Megamonas, and Eubacterium, whose relative abundances increased during 24 h of in vitro fermentation. The short-chain fatty acids (SCFAs) content also increased more than 15-fold, accordingly. Moreover, the effects of ABP on the relative abundance of Bacteroides (Ba.) and Bifidobacterium (Bi.) at the species level were further determined. ABP can enrich Ba. thetaiotaomicron, Ba. intestinalis, Ba. uniformis, and Bi. longum. PICRUSt analysis revealed that the catabolism of ABP was accompanied by changes in the metabolism of carbohydrates, nucleotides, lipids and amino acids, which were also supported by metabonomic results. It is worth mentioning that, after 24 h fermentation, the relative amounts of gamma-aminobutyric acid (GABA), nicotinamide and nicotinamide adenine dinucleotide (NAD+) had 14.43-, 11.34- and 15.36-fold increases, respectively, which were positively related to Bacteroides (Ba. thetaiotaomicron, Ba. intestinalis), Streptococcus, and Bi. longum (|r| > 0.98). These results laid the research foundation for exploring ABP as a potential prebiotic or dietary supplement for the targeted regulation of gut microbiota or metabolites.

Funder

Modern Agriculture in Jiangsu Province, China

China National Postdoctoral Program for Innovative Talents

General Projects of China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3