Author:
Wu Kegang,Zhang Tong,Chai Xianghua,Duan Xuejuan,He Dong,Yu Hongpeng,Liu Xiaoli,Tao Zhihua
Abstract
Essential oils (EOs) have good natural antioxidant and antimicrobial properties; however, their volatility, intense aroma, poor aqueous solubility, and chemical instability limit their applications in the food industry. The encapsulation of EOs in β-cyclodextrins (β-CDs) is a widely accepted strategy for enhancing EO applications. The complexation of cinnamon essential oil (CEO) with five types of β-CDs, containing different substituent groups (β-CD with primary hydroxyl, Mal-β-CD with maltosyl, CM-β-CD with carboxymethyl, HP-β-CD with hydroxypropyl, and DM-β-CD with methyl), inclusion process behaviors, volatile components, and antioxidant and antibacterial activities of the solid complexes were studied. The CEOs complexed with Mal-β-CD, CM-β-CD, and β-CD were less soluble than those complexed with DM-β-CD and HP-β-CD. Molecular docking confirmed the insertion of the cinnamaldehyde benzene ring into various β-CD cavities via hydrophobic interactions and hydrogen bonds. GC-MS analysis revealed that HP-β-CD had the greatest adaptability to cinnamaldehyde. The CEO encapsulated in β-, Mal-β-, and CM-β-CD showed lower solubility but better control-release characteristics than those encapsulated in DM- and HP-β-CD, thereby increasing their antioxidant and antibacterial activities. This study demonstrated that β-, Mal-β-, and CM-β-CD were suitable alternatives for the encapsulation of CEO to preserve its antioxidant and antibacterial activities for long-time use.
Funder
Forestry Scientific technology Innovation Project of Guangdong Province
Science & Technology Planning Project of Guangzhou City
Science & Technology Planning Project of Guangdong Province
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science