Biochemical Mechanism of Fresh-Cut Lotus (Nelumbo nucifera Gaertn.) Root with Exogenous Melatonin Treatment by Multiomics Analysis

Author:

Min TingORCID,Lu Keyan,Chen Jinhui,Niu Lifang,Lin QiongORCID,Yi Yang,Hou Wenfu,Ai Youwei,Wang Hongxun

Abstract

Browning limits the commercial value of fresh-cut lotus root slices. Melatonin has been reported to play crucial plant roles in growth and development. However, the mechanisms in repressing the browning of fresh-cut lotuses are still unclear. In this study, fresh-cut lotus root slices were treated with melatonin, the physical signs of browning were tested, and then the selected samples (0 d, 6 d, 12 d) were used in multiomics analysis. Fresh-cut lotus root slices with a thickness of 4 mm were soaked in a 40 mmol/L melatonin solution for 10 min; then, the slices were packed in pallets and packages and stored at 10 ± 1 °C. The results show that the 40 mmol/L melatonin selected for repressing the browning of lotus roots significantly delayed the decrease in water, total soluble solid content, and Vitamin C, decreased the growth of microorganisms, enhanced total phenolic content, improved total antioxidant capacity, and decreased ·OH, H2O2, and O2−· contents. Moreover, this treatment enhanced phenylalanine ammonialyase, polyphenol oxidase, superoxide dismutase, and catalase activities and reduced peroxidase activities and soluble quinones. NnSOD (104590242), NnCAT (104609297), and some NnPOD genes showed a similar transcript accumulation pattern with enzyme activity. It can be seen from these results that exogenous melatonin accelerated an enhancement in the antioxidant system and AsA-GSH cycle system by regulating ROS-metabolism-related genes, thereby improving the capacity to withstand browning and the quality of lotus root slices. The microbiome also showed that melatonin suppressed the fertility of spoilage organisms, such as Pseudomonas, Tolumonas, Acinetobacter, Stenotrophomonas, and Proteobacteria. Metabonomics data uncovered that the metabolites of flavonoid biosynthesis, phenylpropanoid biosynthesis, tyrosine metabolism, and phenylalanine metabolism were involved in the process.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3