Nondestructive Detection of Pesticide Residue (Chlorpyrifos) on Bok Choi (Brassica rapa subsp. Chinensis) Using a Portable NIR Spectrometer Coupled with a Machine Learning Approach

Author:

Lapcharoensuk Ravipat1ORCID,Fhaykamta Chawisa1,Anurak Watcharaporn1,Chadwut Wasita1,Sitorus Agustami12

Affiliation:

1. Department of Agricultural Engineering, School of Engineering, King Mongkut’s Institute of Technology, Ladkrabang, Bangkok 10520, Thailand

2. Research Center for Appropriate Technology, National Research and Innovation Agency (BRIN), Subang 41213, Indonesia

Abstract

The contamination of agricultural products, such as vegetables, by pesticide residues has received considerable attention worldwide. Pesticide residue on vegetables constitutes a potential risk to human health. In this study, we combined near infrared (NIR) spectroscopy with machine learning algorithms, including partial least-squares discrimination analysis (PLS-DA), support vector machine (SVM), artificial neural network (ANN), and principal component artificial neural network (PC-ANN), to identify pesticide residue (chlorpyrifos) on bok choi. The experimental set comprised 120 bok choi samples obtained from two small greenhouses that were cultivated separately. We performed pesticide and pesticide-free treatments with 60 samples in each group. The vegetables for pesticide treatment were fortified with 2 mL/L of chlorpyrifos 40% EC residue. We connected a commercial portable NIR spectrometer with a wavelength range of 908–1676 nm to a small single-board computer. We analyzed the pesticide residue on bok choi using UV spectrophotometry. The most accurate model correctly classified 100% of the samples used in the calibration set in terms of the content of chlorpyrifos residue on samples using SVM and PC-ANN with raw data spectra. Thus, we tested the model using an unknown dataset of 40 samples to verify the robustness of the model, which produced a satisfactory F1-score (100%). We concluded that the proposed portable NIR spectrometer coupled with machine learning approaches (PLS-DA, SVM, and PC-ANN) is appropriate for the detection of chlorpyrifos residue on bok choi.

Funder

King Mongkut's Institute of Technology Ladkrabang

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3