Whole-Cell Biocatalytic Production of Acetoin with an aldC-Overexpressing Lactococcus lactis Using Soybean as Substrate

Author:

Luo Huajun12,Liu Weihong1,Luo Yiyong1ORCID,Tu Zongcai1,Liu Biqin2,Yang Juan2

Affiliation:

1. National R&D Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China

2. Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China

Abstract

Douchi is a traditional Chinese fermented soybean product, in which acetoin is a key flavor substance. Here, the α-acetolactate decarboxylase gene aldC was cloned from Lactiplantibacillus (L.) plantarum and overexpressed in Lactococcus (L.) lactis NZ9000 by nisin induction. The ALDC crude enzyme solution produced an enzyme activity of 35.16 mU. Next, whole cells of the recombinant strain NZ9000/pNZ8048-aldC were employed as the catalyst to produce acetoin in GM17 medium. An optimization experiment showed that an initial OD600 of 0.6, initial pH of 7.5, nisin concentration of 20 ng/mL, induction temperature of 37 °C and static induction for 8 h were the optimal induction conditions, generating the maximum acetoin production (106.93 mg/L). Finally, after incubation under the optimal induction conditions, NZ9000/pNZ8048-aldC was used for whole-cell biocatalytic acetoin production, using soybean as the substrate. The maximum acetoin yield was 79.43 mg/L. To our knowledge, this is the first study in which the aldC gene is overexpressed in L. lactis and whole cells of the recombinant L. lactis are used as a biocatalyst to produce acetoin in soybean. Thus, our study provides a theoretical basis for the preparation of fermented foods containing high levels of acetoin and the biosynthesis of acetoin in food materials.

Funder

National Natural Science Foundation of China

Research Foundation for Advanced Talents of Jiangxi Normal University

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3