Author:
Liu Xiaoqing,Tian Yuanyuan,Yang Ao,Zhang Chuang,Miao Xiaoqing,Yang Wenchao
Abstract
Propolis is resinous natural product produced by Western honeybees using beeswax and plant and bud exudates, which has a wide range of biological activities, including antioxidation, antibacterial, anti-inflammation, immune regulation, antitumor, and so on. Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer, and accounts for about 30% of all lymphomas. The effect of poplar propolis on DLBCL has not been reported. The IC50 of propolis on the proliferation of DLBCL SU-DHL-2 cell line and its proteins and gene expressions were detected by CCK-8 kit, label-free proteomic, and RT-PCR. The results showed that the IC50 of propolis at the 5 × l05/mL cell for 24 h was 5.729 μg/mL. Label-free-based proteomics analysis showed that there were 115 differentially expressed proteins (61 up-regulated and 54 down-regulated proteins) between IC50 dose-treated and solvent control groups. There were 32.47% differential proteins located in the nucleus, 20.78% in the cytoplasm, and 14.29% in mitochondria. The most significant different pathway (p = 0.0016) of protein enrichment was ferroptosis (including glutamate–cysteine ligase regulatory subunit, ferritin, and heme oxygenase). The relative expression trend of 17 of the total 22 genes selected according to proteomics results was in line with their encoded protein. The highest protein–protein interaction was serine/threonine-protein kinase PLK, which interacted with 16 differential proteins. In conclusion, poplar propolis inhibited SU-DHL-2 cells via ferroptosis pathway, accelerating cell death and down-regulated serine/threonine-protein kinase PLK1, affecting apoptosis of cell. This result provides a theoretical basis for the treatment of DLBCL using propolis.
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献