Study on the Interaction Mechanism of Theaflavin with Whey Protein: Multi-Spectroscopy Analysis and Molecular Docking

Author:

Xu Jia1ORCID,Huang Yi2,Wei Yang2ORCID,Weng Xinchu1,Wei Xinlin2

Affiliation:

1. School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China

2. School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

The interaction mechanism of whey proteins with theaflavin (TF1) in black tea was analyzed using multi-spectroscopy analysis and molecular docking simulations. The influence of TF1 on the structure of bovine serum albumin (BSA), β-lactoglobulin (β-Lg), and α-lactoalbumin (α-La) was examined in this work using the interaction of TF1 with these proteins. Fluorescence and ultraviolet-visible (UV-vis) absorption spectroscopy revealed that TF1 could interact with BSA, β-Lg and α-La through a static quenching mechanism. Furthermore, circular dichroism (CD) experiments revealed that TF1 altered the secondary structure of BSA, β-Lg and α-La. Molecular docking demonstrated that the interaction of TF1 with BSA/β-Lg/α-La was dominated by hydrogen bonding and hydrophobic interaction. The binding energies were −10.1 kcal mol−1, −8.4 kcal mol−1 and −10.4 kcal mol−1, respectively. The results provide a theoretical basis for investigating the mechanism of interaction between tea pigments and protein. Moreover, the findings offered technical support for the future development of functional foods that combine tea active ingredients with milk protein. Future research will focus on the effects of food processing methods and different food systems on the interaction between TF1 and whey protein, as well as the physicochemical stability, functional characteristics, and bioavailability of the complexes in vitro or in vivo.

Funder

National Natural Science Fundation of China

Program of Shanghai Academic/Technology Research Leader

Shanghai Agricultural Leading Talent Program

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3