Affiliation:
1. Center for Applied Mathematics of Guangxi, Yulin Normal University, Yulin 537000, China
2. Guangxi Key Laboratory of Ocean Engineering Equipment and Technology, Beibu Gulf University, Qinzhou 535011, China
3. School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
Abstract
In this paper, a computational fluid dynamics (CFD) model was established and verified on the basis of experimental results, and then the effect of hydrogenation addition on combustion and emission characteristics of a diesel–hydrogen dual-fuel engine fueled with hydrogenation addition (0%, 5%, and 10%) under different hydrogenation energy shares (HESs) and compression ratios (CRs) were investigated using CONVERGE3.0 software. And, this work assumed that the hydrogen and air were premixed uniformly. The correctness of the simulation model was verified by experimental data. The values of HES are in the range of 0%, 5%, 10%, and 15%. And, the values of CR are in the range of 14, 16, 18, and 20. The results of this study showed that the addition of hydrogen to diesel fuel has a significant effect on the combustion characteristics and the emission characteristics of diesel engines. When the HES was 15%, the in-cylinder pressure increased by 10.54%. The in-cylinder temperature increased by 15.11%. When the CR was 20, the in-cylinder pressure and the in-cylinder temperature increased by 66.10% and 13.09%, respectively. In all cases, HC, CO, CO2, and soot emissions decreased as the HES increased. But, NOx emission increased.
Funder
High-Level Talent Research Fund of Yulin Normal University
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献